If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.3x^2=4800
We move all terms to the left:
1.3x^2-(4800)=0
a = 1.3; b = 0; c = -4800;
Δ = b2-4ac
Δ = 02-4·1.3·(-4800)
Δ = 24960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24960}=\sqrt{64*390}=\sqrt{64}*\sqrt{390}=8\sqrt{390}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{390}}{2*1.3}=\frac{0-8\sqrt{390}}{2.6} =-\frac{8\sqrt{390}}{2.6} =-\frac{4\sqrt{390}}{1.3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{390}}{2*1.3}=\frac{0+8\sqrt{390}}{2.6} =\frac{8\sqrt{390}}{2.6} =\frac{4\sqrt{390}}{1.3} $
| (1,3)x^2=4800 | | 11y-6=9y+5 | | 8g+12=3g+57 | | 29=4p-7 | | -4y=y+2 | | 65-32x=55-35x | | 5x-6x=x-2+3x | | 5x-14=7x-3 | | 7x-8=10x-18 | | 1.2-0.4z=2 | | 40*2-2x=18 | | 11x-10=98 | | 0.06x=2x | | 2(9-x)=3(x+16 | | 2(2x+1)=16 | | 3n—24=6 | | 6(n—4)=3(n+2) | | 5(2x+9=15 | | 4(3s+3)=14 | | 5x^2-28x-32=0 | | 2(x+6=6 | | 4(x-5=28 | | 4^2=1^2+x^2 | | 15x175=15-10x | | -4(2t+1)=2 | | 6x^2-72x-144=0 | | 4(4w+10)/5=7 | | x+x=223 | | 4(4w+5)/5=-10 | | 19-4a=4 | | 47/x=7 | | 30y+6=26 |